DNA-binding specificity of Mcm1: operator mutations that alter DNA-bending and transcriptional activities by a MADS box protein.

نویسندگان

  • T B Acton
  • H Zhong
  • A K Vershon
چکیده

The yeast Mcm1 protein is a member of the MADS box family of transcriptional regulatory factors, a class of DNA-binding proteins found in such diverse organisms as yeast, plants, flies, and humans. To explore the protein-DNA interactions of Mcm1 in vivo and in vitro, we have introduced an extensive series of base pair substitutions into an Mcm1 operator site and examined their effects on Mcm1-mediated transcriptional regulation and DNA-binding affinity. Our results show that Mcm1 uses a mechanism to contact the DNA that has some significant differences from the one used by the human serum response factor (SRF), a closely related MADS box protein in which the three-dimensional structure has been determined. One major difference is that 5-bromouracil-mediated photo-cross-linking experiments indicate that Mcm1 is in close proximity to functional groups in the major groove at the center of the recognition site whereas the SRF protein did not exhibit this characteristic. A more significant difference is that mutations at a position outside of the conserved CC(A/T)6GG site significantly reduce Mcm1-dependent DNA bending, while these substitutions have no effect on DNA bending by SRF. This result shows that the DNA bending by Mcm1 is sequence dependent and that the base-specific requirements for bending differ between Mcm1 and SRF. Interestingly, although these substitutions have a large effect on DNA bending and transcriptional activation by Mcm1, they have a relatively small effect on the DNA-binding affinity of the protein. This result suggests that the degree of DNA bending is important for transcriptional activation by Mcm1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural determinants of DNA recognition by plant MADS-domain transcription factors

Plant MADS-domain transcription factors act as key regulators of many developmental processes. Despite the wealth of information that exists about these factors, the mechanisms by which they recognize their cognate DNA-binding site, called CArG-box (consensus CCW6GG), and how different MADS-domain proteins achieve DNA-binding specificity, are still largely unknown. We used information from in v...

متن کامل

ArgRII, a component of the ArgR-Mcm1 complex involved in the control of arginine metabolism in Saccharomyces cerevisiae, is the sensor of arginine.

Repression of arginine anabolic genes and induction of arginine catabolic genes are mediated by a three-component protein complex, interacting with specific DNA sequences in the presence of arginine. Although ArgRI and Mcm1, two MADS-box proteins, and ArgRII, a zinc cluster protein, contain putative DNA binding domains, alone they are unable to bind the arginine boxes in vitro. Using purified g...

متن کامل

Serum response factor and protein-mediated DNA bending contribute to transcription of the dystrophin muscle-specific promoter.

The minimal muscle-specific dystrophin promoter contains the consensus sequence CC(A/T)6GG, or the CArG element, which can be found in serum-inducible or muscle-specific promoters. The serum response factor (SRF), which mediates the transcriptional activation of the c-fos gene in response to serum stimulation, can bind to different CArG box elements, suggesting that it could be involved in musc...

متن کامل

DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors.

Members of the MADS-box family of transcription factors are found in eukaryotes ranging from yeast to humans. In plants, MADS-box proteins regulate several developmental processes including flower, fruit and root development. We have investigated the DNA-binding mechanisms used by four such proteins in Antirrhinum majus, SQUA, PLE, DEF and GLO. SQUA differs from the characterised mammalian and ...

متن کامل

A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora.

MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 1997